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L6vy Walks for Turbulence: A Numerical Study 
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We present a numerical study of enhanced diffusion, for which the mean- 
squared displacement follows asymptotically (r2(t))~t y, 7> 1. We simulate 
continuous time random walks with waiting-time distributions which couple the 
spatial and temporal parameters; this gives rise to L6vy-walks. Our results con- 
firm the theoretically predicted long-time behavior and demonstrate its temporal 
regime of validity. Furthermore, the simulations document the appearance of 
(parameter-dependent) transitions between regular and enhanced diffusion 
regimes. 

KEY WOI~DS: Random walks; L6vy flights; Kolmogorov spectrum; 
turbulence. 

1. I N T R O D U C T I O N  

Large classes of dynamical  processes in disordered media display 
deviations from simple Brownian motion,  a fact manifested th rough  the 
dependence of the mean-squared displacement ( rZ( t ) )  on time. Whereas 
for simple diffusion ( r 2 ( t ) ) ~  t, anomalous  diffusion is characterized by 

( r 2 ( t ) )  ,.~ t ~ (1) 

with y ~ 1. Examples for Eq. (1) are to be found in chaotic dynamics, which 
generally leads to enhanced diffusion (e.g., for turbulent mot ion  7 -~ 3) on 
the one hand, (~ 9) but  also in systems with geometrical constraints (doped 
crystals, glasses, fractals), for which the diffusion is dispersive, i.e., 7 < 1, on 
the other hand. t1~14) 
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In a recent work/15) we have developed an analytical approach based 
on asymptotic expansions. We have stressed that both patterns of 
anomalous diffusion follow from a unified stochastic approach, whose basis 
are continous-time random walks (CTRW)J 1~ 18) The main ingredients 
of our approach are spatio-temporal couplings, (~9"2~ which give rise to 
L6vy walks. (2w23) In this short communication we focus on a numerical 
study of L6vy walks. Simulating such processes is extremely valuable, both 
as a means of visualizing the transport process and also as a possibility to 
explore crossover regimes, since, in principle, the whole temporal range can 
be monitored. As a by-product we are able to verify our previous results 
and to show crossovers at the boundaries between regions of different 
temporal character. 

In the next section we summarize the algebraic approach. In Sec. 3 we 
present the simulation calculations, and end the paper in Sec. 4 with a 
discussion of results. 

2. THE A N A L Y T I C  A P P R O A C H :  C T R W  W I T H  COUPLED 
M E M O R I E S  

An efficient way to treat the dynamics of stochastic processes consists 
in following the trajectories of discrete particles: For a discrete underlying 
space this leads to random walks. (24) 

Let 0(r, t) be the probability distribution of making a step of length r 
in the time interval t to t + dt. The total transition probability in this time 
interval is 

0(t)  = ~ 0(r, t) = 0(k  = 0, t) (2) 
r 

(where, in the last expression we switched to the Fourier space, r--, k). 
Furthermore the survival probability at the initial site is 

�9 ( t )  = 1 - 0 ( ~ )  dr (3 )  

so that, reverting to the Laplace space (t ~ u): 

r = [1 - O(u)]/u  (4) 

In standard fashion (16'251 one has now for the probability density r/(r, t) of 
just arriving at r in the time interval t to t + dr: 

fo r/(r, t) = ~  q ( r ' , ~ ) t p ( r - r ' , t - r ) d r + 6 ( t ) ( ~ r . O  (5) 
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in which the initial condition of starting at t = 0 from r = 0 is incorporated. 
Equation (5) leads to an integral equation for the probability p(r, t) that 
the particle is at r at time t, by observing that 

p(r, t) = q(r, t -- r') q~(r') dr' (6) 

With Eq. (6) and a change in the order of the integrations, Eq. (5) is recast 
into 

p(r, t) = ~, p(r', z) O(r - r', t - r) dr + ~b(t) 3r, o (7) 

Now, turning to the Fourier-Laplace space we have: 

p(k, u) = p(k, u) ~(k,  u) + q~(u) (8) 

with the solution 

1 - ~ ( . )  1 
p(k, u ) - - -  (9) 

u 1 - ~,(k, u) 

One may note that the mean square displacement <r2(t)> is related to 
p(k, t) through: 

02 k =  (r2(t)> = ~ r2p(r, t ) =  - - ~  p(k, t) (10) 
r 0 

Thus one obtains that in the CTRW formalism the knowledge of ~,(r, t ) - -  
or, equivalently, of O(k, u)--determines, via Eqs. (9) and (10), the form of 
<r~(t)>. 

Now, as pointed out on several occasions, (9'1539'2~ a decoupled 
spatiotemporal scheme, for which one has 

O(r, t) = ,~(r) O(t) (11) 

is unable to give rise to values 7 larger than unity in Eq. (1). On the other 
hand, such values are typical for turbulent motion, where ? ~-3 holds. (1-9) 
In order to obtain for ( r 2 ( t ) )  a t ~ behavior with ? > 1 it is imperative to 
use coupled O(r, t) fo rms .  (9A539'2~ A suitable function is (22) 

O(r, t) = C r - " 6 ( r -  t v) (12) 

which defines the L6vy walks. ~9'22) Here, through the ~5 function, r and 
t are coupled. Equation (12) allows steps of arbitrary length as for 
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L6vy flights,/28) but long steps are penalized by requiring more time to be 
performed. Or, stated differently, in a given time window only a finite shell 
of points may be reached: Hierarchically, nearer points are no more and 
farther points not yet accessible. 

In Ref. 15 we have studied analytically the behavior of (r2(t))  on 
lattices of arbitrary dimensions d, by using CTRWs where the probability 
distribution O(r, t) is given by Eq. (12). Setting 

#* = / t -  d +  1 (13) 

the results for turbulent diffusion (7 > 1, v > 1/2) may be summarized as 
follows (Table I of Ref. 15); for long times one has: 

( r2(t))  ~ t 2v (1 < v/t* < 2) (14a) 

( r 2 ( t ) ) ~ t  2-~*+2v (2<v#* < 1 +2v) (14b) 

(r2(t))  ~ t (1 + 2v < v/t*) (14c) 

Similar relations hold also for dispersive transport (7 < 1, v < 1/2). t15) From 
Eqs. (14) we expect thus in the case 7=3 ,  v=3 /2  crossover effects for 
/t* =4/3 and for # * =  8/3. Thus the particular distribution used, Eq. (12), 
shows a very rich pattern. In the enhanced diffusion regime the turbulent 
dynamics appears as a special case: The transitions show an intermediate 
zone between Brownian motion and fully developed enhanced diffusion. 
We note that this finding is comparable to the transition from Brownian to 
enhanced motion in ultrametric spacesJ 8'a4) In the next section we compare 
Eqs. (14) to numerical simulation results. 

3. N U M E R I C A L  S I M U L A T I O N S  

In order to clearly visualize the L~vy process involved in Eq. (12) and 
in order to be able to monitor the full time dependence of (r2(t))  (and not 
only its asymptotic behavior) we found it expedient to perform numerical 
simulations. 

The procedure is as follows: First, we note from Eq. (13) that the role 
of the dimension consists in only changing/t  to #*, and leaving otherwise 
everything intact. We have thus--for simplicity--centered on the special 
case d = 1, where # -- #*, and have restricted calculations in higher dimen- 
sions to consistency checks. Second, from Eq. (12) one has to determine for 
each step the distance and the time needed to reach the next location. The 
spatial distribution of location distances follows by integrating over all 
times 

fo o ~b(r) = dt ~p(r, t )= Cr ~ (15) 
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where/3 = #  + 1 - v - 1 .  We can now choose a walking distance r according 
to the distribution (15); the time needed to travel this distance is given, 
according to Eq. (12), by t =  Frl l/v, Note that for v =  1 the situation is 
somewhat similar to random walks in which the walker steps preferentially 
in the same direction, the so-called persistent (or correlated) random 
walks. (24-27) 

To visualize a realization of such a L6vy walk we present in Fig. 1 the 
situation for a two-dimensional geometry where we chose # = 3.5 and v = 1. 
For the L6vy walk depicted, a (r2(t)> ~ t 3/2 behavior is expected, i.e., a 
behavior intermediate between the t and the t 2 extremal regimes. One 

Fig. 1. Realization of a L6vy walk, obtained from the distribution probability, Eq. (12), 
where # = 3.5 and v = 1. The situation depicted evolved after I000 time units. The starting 
point of the walk is marked by a dot. 
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should remark on the self-similar aspect of the picture: a series of small 
steps is followed by larger ones, which are, after a while, followed by larger 
ones still; furthermore, no particular length scale dominates. Figure 1 may 
be compared to the very similar Figs. 296 and 297 of Ref. 28. 

To analyze the mean squared displacement for the turbulent case, for 
which typically v = 3/2, we display in Fig. 2, {r2(t)) as a function of time. 
We have varied #* between 1 and 3.6 and covered some 4 orders of 
magnitude in time. For each numerical result (dot) displayed, s o m e  10  4 

realizations were used in its averaging. Note the log-log scales; in these 
scales Eq. (1) corresponds to a straight line of slope 7. 

Interestingly, the numerical results do not lie, as a rule, on straight 
lines; deviations are evident, especially at early times. We have indicated 
these deviations as dashed curves and used only the numerical results in 
the late time domain for a least-squares (linear regression) fit. A similar 
behavior is also obtained for v = 1, and we present our simulation results 
together with their analysis in Fig. 3. 

For both cases (v = 3/2 and v = 1 ) we summarize in Fig. 4 the slopes 7 

( r  2 ) 

101~ 

10 8 

106 
z 

104 

102 I 

10 o 
10 o 

ILL= 
~/ 10 

, / /  14 
P = 1,5 1.6 

1.8 z 

~'/~ 20 

~ 5.0 " 

101 102 103 104 

1 

Fig. 2. The mean squared displacement { r2 ( t ) )  is indicated as a [unction of time on log-log 
scales. Here v =  3/2 in Eq. (12) and /~ is given parametrically. The dots are the result of 
simulation calculations, the full lines denote the least-squares linear fit, and the dashed lines 
are guides to the eye. 
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Fig. 4. Summary  of the numerically determined asymptotic behavior from Figs. 2 and 3. The 
slopes are presented as a function of p; we use dots for v = 3/2 and circles for v = 1. The full 
lines give the analytically expected behavior, Eqs. (14). 
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obtained by the least-squares-fit. The overall behavior supports very nicely 
the analytical expressions of Sec. 2. Indeed, the transition regimes 4/3 < 
#* < 8/3 for v = 3/2 and 2 < #* < 3 for v = 1 are clearly visible. Furthermore, 
in both cases the regimes of enhanced diffusion (7 = 3 or 7 = 2, respectively) 
and of regular diffusion (7 = 1 ) are reached within the time of the numerical 
experiment. In Fig. 4 we have also indicated through full-lines the 
theoretically predicted behavior. Whereas the general agreement is good, 
we also remark that the numerical crossover behavior is considerably 
smoother than theoretically expected: We attribute this to the very long 
times which are required to reach the asymptotic regime of (r2(t)) for 
marginal values of /~* (#*=4/3  and /~*=8/3 or # * = 2  and # * = 3 ,  
respectively). 

4. C O N C L U S I O N S  

The main conclusion of our present study is that one can use with 
confidence L~vy walk models in order to model anomalous diffusion in the 
enhanced (7 > 1) domain. Whereas deviations from the asymptotic regime 
are visible at short times, at longer times (factors of 10 3 ) one has indeed the 
qualitatively correct behavior; thus the theory works well at time intervals 
which are of experimental relevance. 

A word of caution has to be said for the intermediate regime: as was 
to be expected, the convergence to the theoretically predicted slopes is 
particularly slow for the marginal 7 values; care has to be exerted there, by 
monitoring the temporal development over large time scales. 

To acquire a fuller picture for the kinematics of turbulence one should 
compare the computer-simulated motion to experimental findings. 
Nowadays, careful measurements should become available. Up to now the 
standard means of marking the velocity regions were by injection of color 
plumes or by smoke (aerosols, oil fog). These means are not very satisfac- 
tory, since one has to put the markers exactly where the vorticity is 
generated, which taken strictly is impossible; (29) hence on a small scale the 
interface is marked only roughly. For more precision one has to revert to 
tracking the molecules of the turbulent flow by themselves. An early 
proposal was put forth by de Gennes, who suggested using NMR and ther- 
mal experiments/3~ We, on the other hand, feel that the method of choice 
is to use fluorescent probes, which are excited by a laser, so that one 
attains a high spatial resolution and one does not, through the marking, 
interfere with the flow process. A series of pictures of jet flows was indeed 
made visible through luminescence by Dimotakis e t  al . ;  (32) it should be 
expected that this method also allows one to check the validity of the 
relations developed in this paper. 



L~vy Walks for Turbulence: A Numerical Study 1527 

In summary, tracking enhanced diffusion in turbulent motion could 
proceed along lines used in the study of dispersive motion in disordered 
materials, and the L6vy walk-CTRW approach provides a unified 
theoretical scheme for both types of anomalous diffusion. 

ACKNOWLEDGMENTS 

A grant of computer time from the Rechenzentrum der ETH-Zfirich 
and the support of the Deutsche Forschungsgemeinschaft (SFB 213) and of 
the Fonds der Chemischen Industrie are gratefully acknowledged. 

REFERENCES 

1. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics (MIT, Cambridge, 1971), 
Vol. I; (1975), Vol. II. 

2. L. F. Richardson, Proc. R. Soc. London Ser. A 110:709 (1926). 
3. G. K. Batchelor, Proc. Cambridge Philos. Soc. 48:345 (1952). 
4. G. K. Batchelor and A. A. Townsend, in Surveys in Mechanics, G. K. Batchelor and A. A. 

Townsend, in Surveys in Mechanics, G. K. Batchelor and R. M. Davies, eds. (Cambridge 
University Press, 1956), p. 352. 

5. A. Okubo, J. Oceanol. Soc. Jpn. 20:286 (1962). 
6. H. G. E. Hentschel and I. Procaccia, Phys. Rev. A 29:1461 (1984). 
7. S. Grossmann and I. Procaccia, Phys. Rev. A 29:1358 (1984). 
8. S. Grossmann, F. Wegner, and K. H. Hoffman, J. Phys. (Paris) Lett. 46:L575 (1985). 
9. M. F. Shlesinger and J. Klafter, Phys. Rev. Lett. 54:2551 (1985). 

10. H. Scher and E. W. Montroll, Phys. Rev. B 12:2455 (1975). 
11. M. F. Shlesinger, J. Stat. Phys. 10:421 (1974). 
12. S. Alexander and R. Orbach, J. Phys. (Paris) Lett. 43:L625 (1982). 
13. A. Blumen, J. Klafter, B. S. White, and G. Zumofen, Phys. Rev. Lett. 53:1301 (1984). 
14. A. Blumen, J. Klafter, and G. Zumofen, in Optical Spectroscopy of  Glasses, I. Zschokke, 

ed. (Reidel, Dordrecht, Holland, 1986), p. 199. 
15. J. Ktafter, A. Blumen, and M. F. Shlesinger, Phys. Rev. A 35:3081 (1987). 
16. E. W. Montro/l and G. H. Weiss, J. Math. Phys. 6:167 (1965). 
I7. A. Blumen and G. Zumofen, .L Chem. Phys. 77:5127 (1982). 
18. A. Blumen, J. Klafter, and G. Zumofen, in Fractals in Physics, L. Pietronero and 

E. Tossatti, eds. (North Holland, Amsterdam, 1986), p. 399. 
19. J. Klafter and R. Silbey, Phys. Rev. Lett. 44:55 (1980). 
20. M. F. Shlesinger, J. Klafter, and Y. M. Wong, J. Stat. Phys. 27:499 (1982). 
21. H. Takayasu, Progr. Theor. Phys. 72:471 (1984). 
22. M. F. Shlesinger and J. Klafter, in On Growth and Form, H. E. Stanley and N. Ostrowski, 

eds. (Nijhoff, Amsterdam, 1985), p. 279. 
23. M. F. Shlesinger, B. J. West, and J. Klafter, Phys. Rev. Lett. 58:1100 (1987). 
24. G. H. Weiss and R. J. Rubin, Adv. Chem. Phys. 52:363 (1983). 
25. J. W. Haus and K. W. Kehr, Phys. Rep. 150:263 (1987). 
26. P. Argyrakis and R. Kopelman, Phys. Rev. B 22:1830 (1980). 
27. K. Kehr and P. Argyrakis, J. Chem. Phys. 84:5816 (1986). 



1528 Zumofen et  al.  

28. B. B. Mandelbrot, The Fractal Geometry of  Nature (W. H. Freeman, San Francisco, 1982). 
29. K. R. Sreenivasan and C. Meneveau, J. Fluid Mech. 173:357 (1986). 
30. P. G. de Gennes, J. Physique Lett. 35:L1 (1977). 
31. A. Blumen, G. Zumofen, and J. Klafter, J. Lumin. 40/41:641 (1988). 
32. P. Dimotakis, R. C. Lye, and D. Z. Papantoniou, 15th Intl. Symp. Fluid Dyn., (Jachranka, 

Poland, 1981), and Ref. 29. 


